
CSE 403
Software Engineering

Spring 2023

#4: Software development life cycle

What is UP?

Week 1

○ ✅ Course & Projects bootstrapped
○ ✅ Discussed SW project good practices (Joel's Test)

Today

● ❗ Submit Project Ideas ❗
○ (50% done!!!)

● Thoughts about SW Engineering Life Cycle
○ The problem
○ Traditional Models
○ Agile Models
○ What is the best for your project?

Software development: the high-level problem

Specification

???

Source code

One solution: “Here happens a miracle”

Software development: code and fix

Specification

???

Source code

Software development: ad-hoc or systematic?

Pros: Ad-hoc
● ...

Cons: Ad-hoc
● ...

Software development: ad-hoc or systematic?

Pros: Ad-hoc
● No formal process and onboarding costs.
● Easy, quick, and flexible.

Cons: Ad-hoc
● Might lack important tasks such as design or testing.
● Doesn’t scale to multiple developers.
● Difficult to measure effort and progress.

One solution: “Here happens a miracle”

Software development: code and fix

Specification

???

Source code

The Engineering way: “Can we do better given the context?”

Software development: code and fix

Specification

!!!

Source code

Software Development Life Cycle (SDLC)

SDLC: produce software through a series of stages
● From conception to end-of-life.
● Can take months or years to complete.

The software development life cycle (SDLC)

SDLC: produce software through a series of stages
● From conception to end-of-life.
● Can take months or years to complete.

Goals of each stage
● Define a clear set of actions to perform.
● Produce tangible (trackable) items.
● Allow for work revision.
● Plan actions to perform in the next stage.

The software development life cycle (SDLC)

Life-cycle stages

Virtually all SDLC models have the following stages
● Requirements
● Design
● Implementation
● Testing
● Maintenance

Life-cycle stages

Virtually all SDLC models have the following stages
● Requirements
● Design
● Implementation
● Testing
● Maintenance

Key questions:
- How to combine the stages and in what order?
- What is the focus on each of those stages?
- How quickly are you going through them?

Major SDLC models

Traditional models
● Waterfall model
● Prototyping
● Spiral model
● ...
Agile models
● XP (Extreme Programming)
● Scrum
● ...

Major SDLC models

Traditional models
● Waterfall model
● Prototyping
● Spiral model
● ...
Agile models
● XP (Extreme Programming)
● Scrum
● ...

All models have the same goals:
Manage risks and produce high quality software.

Traditional SDLC models

Waterfall model

Requirements

Architecture/Design

Implementation

Verification

Maintenance

● Top-down approach.
● Sequential,

non-overlapping activities
and steps.

● Each step is signed off
on and then frozen.

● Most steps result in a
final document.

Waterfall model

Requirements

Architecture/Design

Implementation

Verification

Maintenance

● Top-down approach.
● Sequential,

non-overlapping activities
and steps.

● Each step is signed off
on and then frozen.

● Most steps result in a
final document.

Conceptually very clean, but what’s missing?

Waterfall model

Requirements

Architecture/Design

Implementation

Verification

Maintenance

● Top-down approach.
● Linear, non-overlapping

activities and steps.
● Each step is signed off

on and then frozen.
● Most steps result in a

final document.
● Backsteps to correct

mistakes.

Waterfall model

Advantages
● Easy-to-follow, sequential model.
● Reviews ensure readiness to advance.
● Works well for well-defined projects (requirements are clear).

Drawbacks
● Hard to do all the planning upfront.
● Final product may not match the client’s needs.
● Step reviews require significant effort.

Waterfall model

Requirements

Architecture/Design

Implementation

Verification

Maintenance

● Top-down approach.
● Sequential,

non-overlapping activities
and steps.

● Each step is signed off
on and then frozen.

● Most steps result in a
final document.

In which contexts this can work well?

Prototyping

● Bottom-up approach.
● Problem domain or requirements

not well defined or understood.
● Create small implementations of

requirements that are least understood.
● Requirements are “explored” before the

product is fully developed.
● Developers gain experience when developing

the “real” product.

Prototype Review

Refine

Prototyping

● Bottom-up approach.
● Problem domain or requirements

not well defined or understood.
● Create small implementations of

requirements that are least understood.
● Requirements are “explored” before the

product is fully developed.
● Developers gain experience when developing

the “real” product.

Prototype Review

Refine

In which contexts this can work well?

http://www.youtube.com/watch?v=yafaGNFu8Eg

Prototyping: Cool, uhu?

Advantages
● Client involvement and early feedback.
● Improves requirements and specifications.
● Reduces risk of developing the “wrong” product.

Drawbacks
● Time/cost for developing a prototype may be high.
● Focus may be too narrow (no thinking outside the box).

Spiral model

● Incremental/iterative model (combines the waterfall model
and prototyping).

● Iterations called spirals.
● Activity centered:

○ Specify
○ Risk analysis
○ Build & Evaluate
○ Plan

● Phased reduction of risks
(address high risks early).

 Boehm, Spiral Development: Experience, Principles,and
 Refinements, CMU/SEI-2000-SR-008

http://www.sei.cmu.edu/reports/00sr008.pdf
http://www.sei.cmu.edu/reports/00sr008.pdf

Spiral model

Advantages
● Early indication of unforeseen problems.
● Allows for changes.
● The risk reduces as costs increase.

Drawbacks
● Harder to run!
● Requires proper risk assessment.
● Requires a lot of planning and experienced management.

Agile SDLC models

Agile models

Agile models

Agile Manifesto (http://agilemanifesto.org/):
● Argument: the world is too uncertain, we have to be

flexible and responsive to changes!

Agile models

Agile Manifesto (http://agilemanifesto.org/):
● Individuals and interactions over processes and tools
● Working software over comprehensive documentation
● Customer collaboration over contract negotiation
● Responding to change over following a plan.

Agile models: XP

Extreme Programming (XP)

Agile models: XP

Extreme Programming (XP)
● Shared code ownership
● New versions may be built several times per day (CI)
● All tests must be run and pass for every build

○ test-driven development is highly desirable
● Products delivered to customers weekly.
● Adaptation and re-prioritization of requirements.

Agile models: XP

Extreme Programming (XP)
● Shared code ownership
● New versions may be built several times per day (CI)
● All tests must be run and pass for every build

○ test-driven development is highly desirable
● Products delivered to customers weekly.
● Adaptation and re-prioritization of requirements.

Intense!

Agile models: XP

Extreme Programming (XP)
● Pair programming and

continuous code review.

Agile models: XP

Extreme Programming (XP)
● Pair programming and

continuous code review.

Anyone ever used it?

Agile models: XP

Extreme Programming (XP)
● Pair programming and

continuous code review.
● Pairs and roles are

frequently changed.

Agile models: XP

Extreme Programming (XP)
● Pair programming and

continuous code review.
● Pairs and roles are

frequently changed.

Agile models: XP

Extreme Programming (XP)
● Pair programming and

continuous code review.
● Pairs and roles are

frequently changed.
● Improves communication,

and feedback.

$ git blame **

Agile models

Basics
● Maintain simplicity.
● Team members choose their own methods, tools etc.
● Continuous customer involvement.
● Expect requirements to change, focus on incremental delivery.

Agile models

Basics
● Maintain simplicity.
● Team members choose their own methods, tools etc.
● Continuous customer involvement.
● Expect requirements to change, focus on incremental delivery.

Any takers?

Agile models

Advantages
● Flexibility (changes are expected).
● Focus on quality (continuous testing).
● Focus on communication.

Drawbacks
● Requires experienced management and highly skilled

developers.
● Prioritizing requirements can be difficult when there are

multiple stakeholders.
● Best for small to medium (sub) projects.

What’s the best SDLC model?

What model would you choose and why?

● A control system for anti-lock braking in a car.

● A hospital accounting system that replaces an existing one.

● An interactive system that allows airline passengers to
quickly find replacement flights (for missed or bumped
reservations) from airport terminals or a mobile app.

What’s the best SDLC model?

Project management triangle (pick any two)

Consider
● The project and task at hand.
● Well-definedness of requirements.
● Risk management and quality/cost control.
● Customer involvement and feedback.
● Experience of management and team members.

Time Cost

Scope

Quality

Summary: SDLC models

● All models have the same goals: manage risks and
produce high quality software.

● All models involve the same activities and steps
(e.g., specification, design, implementation, and testing).

● All models have advantages and drawbacks.

● Traditional models: E.g., Waterfall, Prototyping, Spiral.

● Agile models: E.g, Extreme Programming (XP), Scrum.

What’s next?

What’s next?

Question, please!

