
LGtM
Hopefully nobody

By a software engineer that probably doesn’t want to do code review,  
or a quick stamp of approval after a thorough code review

“Looks Good to Me”

Apollo Zhu, CSE 403 23SP

Code Review
What? Why? How?

Code Review

A constructive review of a fellow developer’s code.

A required sign-off from another team member before a
developer is permitted to check in changes or new code.

Why Code Review
Didn’t we already have tests?

• Average defect detection rates

• Unit testing: 25%

• Integration testing: 45%

• Design and code inspections: 55% and 60%

• 11 programs developed by the same group of people

• No reviews: average 4.5 errors per 100 LOC

• With reviews: average 0.82 errors per 100 LOC

Why Code Review
Didn’t we already have tests?

• No reviews: average 4.5 errors per 100 LOC

• With reviews: average 0.82 errors per 100 LOC

• IBM's Orbit project

• 500,000 LOC, 11 levels of inspections

• Delivered early with 1% of the predicted errors

• After AT&T introduced reviews

• 14% increase in productivity and a 90% decrease in defects

Amanda Camp, Software Engineer, Google

“All code that gets submitted needs to be reviewed by at
least one other person, and either the code writer or the
reviewer needs to have readability in that language. Most
people use Mondrian [now Critique] to do code reviews, and
obviously, we spend a good chunk of our time reviewing code.”

“What could go wrong?”
Famous last words

Branch Protection

New Workflow - Happy Path
• New Branch

• Commit, Push, (Repeat)

• Open Pull Request

• Code Review 
 
 
 
 
 

• Merge

“Looks Garbage to Me”

How the programmer
wrote it

How the programmer
wrote it

Ryan McElroy, Software Engineer, Meta

"At Facebook, we have an internally-developed web-based tool to aid the code
review process. Once an engineer has prepared a change, she submits it to this
tool, which will notify the person or people she has asked to review the change,
along with others that may be interested in the change -- such as people who
have worked on a function that got changed.

At this point, the reviewers can make comments, ask questions, request changes,
or accept the changes. If changes are requested, the submitter must submit a
new version of the change to be reviewed. All versions submitted are retained,
so reviewers can compare the change to the original, or just changes from the last
version they reviewed. Once a change has been submitted, the engineer can
merge her change into the main source tree for deployment to the site during the
next weekly push, or earlier if the change warrants quicker release."

What are we reviewing?

• Verification: are we building the system right?

• Validation: are we building the right system?

What are we reviewing?

• Verification: are we building the system right?

• Validation: are we building the right system?

What the PR included What the customer
really needed

What are we reviewing?

• Verification: are we building the system right?

• Validation: are we building the right system?

• Presence of good properties?

• Absence of bad properties?

• Identifying errors?

• Confidence in the absence of errors?

How the code was
documented

How much the tests
covered

What are we reviewing?

• Verification: are we building the system right?

• Validation: are we building the right system?

• Presence of good properties?

• Absence of bad properties?

• Identifying errors?

• Confidence in the absence of errors?

• Robust? Safe? Secure? Available? Reliable?

• Understandable? Modifiable?

• Cost-effective?

• Usable?

public class Account {
 double principal,rate; int daysActive,accountType;
 public static final int STANDARD = 0, BUDGET = 1,
 PREMIUM = 2, PREMIUM_PLUS = 3;

 public static double calculateFee(Account[] accounts)
 {
 double totalFee = 0.0;
 Account account;
 for (int i=0;i<accounts.length;i++) {
 account=accounts[i];
 if(account.accountType == Account.PREMIUM ||
 account.accountType == Account.PREMIUM_PLUS)
 totalFee += .0125 * (// 1.25% broker's fee
 account.principal * Math.pow(account.rate,
 (account.daysActive / 365.25))
 - account.principal); // interest-principal
 }
 return totalFee;
 }
} Code Review Exercise

Alan Fineberg, Software Engineer, Yelp

“At Yelp we use review-board. An engineer works on a branch and
commits the code to their own branch. The reviewer then goes through
the diff, adds inline comments on review board and sends them back.
The reviews are meant to be a dialogue, so typically comment
threads result from the feedback. Once the reviewer's questions and
concerns are all addressed they'll click "Ship It!" and the author will
merge it with the main branch for deployment the same day.”

Example Dialogue
https://github.com/apple/swift/
pull/34094

Correctness

Efficiency

Alternatives

Documentation Changes

User Testing and Feedback

https://github.com/apple/swift/pull/34094
https://github.com/apple/swift/pull/34094

Example Dialogue
Correctness

Efficiency

Alternatives

Documentation Changes

User Testing and Feedback

Making a Good Pull Request
Think like a reviewer

• Use descriptive but concise title and summary

• Describe context, rationale, and alternatives considered

• Link to relevant resources (specs, issues/bug tracker, previous PR)

• Provide screenshots/recordings for UI changes

• https://github.blog/2015-01-21-how-to-write-the-perfect-pull-request/

Logistics - CSE 403
How and where?
• Online/electronic
• In-person meeting

• Best to prepare beforehand: artifact is distributed in advance

• Preparation is critical and usually identifies more defects than the meeting

Who participates?
• One other developer
• A group of developers

What is reviewed?
• A specification

• A coherent module (e.g., checklist-style “inspection”)

• An entire component (“holistic review”)

• A single code commit or PR (“incremental review”)

A message that you’ll likely see in Slack

“Can someone review this PR please?
Thanks”

YES

WHO?

WHEN?

Logistics

• Who should review what changes?

• How to set up (automated) notifications?

• How many reviewers per change?

• What's the expected review time frame?

• Approval for requested changes vs. general feedback

• Who submits after approval?

• LGTM and "auto-submit" -> reviewer submits

• Approval plus comments -> author submits

A counter argument

“We tried doing code reviews, but it was
not useful. We never find any bugs or
errors; the code is always approved.”

Logstics

• How to establish an effective and inclusive peer-review process?

• How to minimize biases in the peer-review process?

Action Items

• Figure out code review logistics with the team

• Start using pull requests and doing code reviews

• Enforce code review through branch protection

• Automate the code review process with CI checks

