
CSE 403
Software Engineering

Spring 2023

#13: Build systems

This week

● Get the source code
● Install dependencies
● Compile the code
● Run static analysis
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship!

What does a developer do?

● Get the source code
● Install dependencies
● Compile the code
● Run static analysis
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship!

What does a developer do?

Which of these tasks should be handled manually?

● Get the source code
● Install dependencies
● Compile the code
● Run static analysis
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship!

What does a developer do?

Which of these tasks should be handled manually?
NONE!

● Get the source code
● Install dependencies
● Compile the code
● Run static analysis
● Generate documentation
● Run tests
● Create artifacts for customers
● Ship!

How to automate these tasks?

Orchestrate tasks with a build system!

Build systems: tasks

Tasks are code!
● Should be checked into version control
● Should be code-reviewed
● Should be tested

Best practices

● Automate everything (one-step build)!
● Always use a build tool.
● Use CI to build and test your code on every commit.
● Don’t depend on anything that’s not in the build file (hermetic)!
● Don’t break the build!

Build systems: dependencies between tasks

Example code and corresponding tests:

> ls src/

Lib.java LibTest.java Main.java SystemTest.java

compile
Main

compile
Lib

run lib
test

run
system
test

Build systems: dependencies between tasks

What are the dependencies between these tasks?

compile
Main

compile
Lib

run lib
test

run
system
test

Build systems: dependencies between tasks

compile
Main

compile
Lib

run lib
test

run
system
test

Build systems: dependencies between tasks

compile
Main

compile
Lib

run lib
test

run
system
test

Build systems: dependencies between tasks

In what order should we run these tasks?

Large projects have thousands of tasks
● Dependencies between tasks form a directed acyclic graph.

Build systems: determining task order

Large projects have thousands of tasks
● Dependencies between tasks form a directed acyclic graph.

Also an issue for managing the code dependencies (libraries)

Build systems: determining task/install order

Large projects have thousands of tasks
● Dependencies between tasks form a directed acyclic graph.

Also an issue for managing the code dependencies (libraries)

Curiosity: Topological sort
● Order nodes such that all dependencies are satisfied
● Implemented by computing indegree

(number of incoming edges) for each node
○ No dependencies go first and open door to the others

● See extra slides for example!

[Build systems: how to determine task order?]

gradle

Open-source successor to ant and maven
● Groovy/Kotlin DSL (vs. xml)
● Many defaults for (maven) conventions
● Can query Maven Central for dependency resolution

bazel

Open-source version of Google’s internal build tool (blaze)

Build systems: JAVA+

https://gradle.org/
https://bazel.build/

hatch

Implements standards from the Python standards
● Uses TOML files
● Integrates with PIP

○ Manages dependencies

poetry

Packaging and dependence manager

tox

Automate and standardize testing

Build systems: Python

https://hatch.pypa.io/
https://python-poetry.org/
https://tox.wiki/

npm

Standard package/task manager for Node
"Largest software registry in the world."

webpack

Module bundler for modern JavaScript applications

Gulp

Tries to improve dependency and packing

Build systems: JavaScript+

https://docs.npmjs.com/about-npm
https://webpack.js.org/
https://gulpjs.com/

Demo?

Demo: "Architecture"

Demo: LITW API

Demo: LITW-API

pyproject.toml (New Python standard)

start_server.py

requirements.txt

Dockerfile

README.md

src/

litw/

api/

data/

tests/

api.py (A FastAPI App)

[project]
…

[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"

dependencies = [
 "fastapi[all]",
 "pymongo",
 "python-jose[cryptography]"
]

[tool.hatch.version]
path = "src/litw/api/__about__.py"

[tool.hatch.envs.test]
dependencies = [
 "pytest"
]

[tool.hatch.envs.test.scripts]
test = "pytest {args:src/litw/api/tests}"

[[tool.hatch.envs.test.matrix]]
python = ["3.9", "3.10", "3.11"]

Demo: pyproject.toml

Demo: LITW Template

Demo: LITW-Template

docs

template

/css + /img + /js + …
/src

study.js

/templates

index.html

package.json (NPM config file)

webpack.config.js (WebPack config file)

Demo: LITW-Template (NPM)

Demo: LITW-Template (WebPack)

Many WARNINGS after!!!

This week

Questions, please!

EXTRA MATERIAL

compile
Main

compile
Lib

run lib
test

run
system
test

Build systems: topological sort

What’s the indegree of each node?

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

1

3

Build systems: topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

2

Build systems: topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

1

Build systems: topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

0

Build systems: topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

0

0

0

0

Build systems: topological sort

compile
Main

compile
Lib

run lib
test

run
system
test

Valid sorts:

1. compile Lib, run lib test,
compile Main, run system test

2. compile Main, compile Lib,
run lib test, run system test

3. compile Lib, compile Main,
run lib test, run system test

Build systems: topological sort

